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When the development of instability in the coordinate-independent stationary 
states is investigated, the determination of the boundary of the expanding re - 
gion within which the perturbations grow, initially specified in d bounded region 

is of great importance. In particular, the knowledge of these boundaries makes 
it possible to decide whether the instability is absolute or convective [l ,2 1. 

Below it will be shown that a boundary of the region occupied by growing per- 
turbations can be obtained, in the non -onedimensional case, in the form of 

an envelope. of the straight lines or planes bounding the region in which the 

growth of the one -dimensional perturbations takes place. 
We shall limit ourselves, for convenience, to investigating the two-dimen - 

sional perturbations (the three-dimensional perturbations are investigated in the same 

manner ). As we know, a perturbation which is initially localized and represented by 
the Fourier integral [3] 

can be estimated along the rays x = Ut, y = Vt as t-co * using the method 
of steepest descent [3-l in accordance with the formulas 

exp [t Im 0’ (U, V) - lnt] 

co’ = o (k,, k,) - klU - k,V 

h / ak, = U, 6’~ ! r3ka = V 

(1) 

(2) 

(31 

where o = o (k,, k,) represents the dispersion equation of the perturbations. We find 
the function 0’ = o’(U, VI by obtaining the values of kl and ka from (3), the 

latter defining the points of steepest descent of the function: o’ (k,, k,, U, V) on the 
complex planes kl and ka, and substituting these values into (2 ) . 

The curve defined by the equation 

Im o’(U, V) = 0 (4) 

separates the domain of values of U and V at which the perturbations grow along 
the ray x = Ut, y = Vt, from the domain corresponding to the decay of the pertur- 

bations. 
Let us consider the one-dimensional perturbations corresponding to the same 

dispersion equation and such, that a coordinate system can be chosen so that Im ka = 6. 
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The perturbations in this coordinate system will not grow along the !I -axis, and we 

shall regard the real quantity li, as a parameter. The asymptotic behavior of the 
one-dimensional perturbations along the ray 5 = 1Jt as t 4 00 will have the form 

exp [t Im an (k,, U) - 1/a In t] 
(5) 

0” = o (k,, k,) - kllJ, ch/i3k, = U (6) 

The boundaries of the domain on the U -axis corresponding to the growing 
perturbations are determined by the values of u extremal in k2 and satisfying 

the equation 

Im w” (k,, U) :--: 0 (7) 

Let the quantity U assume, at certain k, = kzo , its extremal value U,. 
We shall show that a point can be found on the straight line u = U, lying in the 
U, V-plane, which belongs to the boundary curve (4). When k2 = kzo and U = U, , 

we have 
(a Im d’/dkz)cT = 0 (8) 

According to (6) we have 

From (8 ) and (9 ) it follows that a v, exists such that 

(&~)!dk,)~~, =z V,, Im V, = 0 (10) 

The fact that kz and I’, are real implies, together with (7 1, that the rela- 
tion (4) holds for the values C,, and V, , i.e. that the latter point belongs to the 

boundary curve. 
We shall now show that the straight line U = U. touches the boundary curve 

(4) at the point l:,), V, Indeed, the derivative of Im w’ along the direction of 
v will vanish only under the condition that the curve (4) has a vertical tangent. 

Using the relations (2 ) and (3 > , we obtain 

(TJ1_/ hl[i$jk,i,$j, (~),~,(~),.--k--- l,J/< 

[$hjr_-.V ($!)li]= -llll/i~ 

Considering now the straight lines of all possible orientations bounding the regions of 
growth of the one-dimensional perturbations, we obtain (4 1 as their envelope. 
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